Bounds on the Lifetime of Wireless Sensor Networks Employing Multiple Data Sink

A. P. Azad and A. Chockalingam

November 2006

Supported by

Beceem Communications Privated Limited

and

Wireless Research Lab: http://wrl.ece.iisc.ernet.in

Department of Electrical Communication Engineering

Indian Institute of Science

Bangalore - 560012. INDIA

Outline

- Introduction
- Single vs Multiple Base Stations
- System Model
- Bounds on Network Lifetime
 - Single Base Station
 - Two Base Station
 - * Jointly Optimum vs Individually Optimum
- Conclusions

Introduction

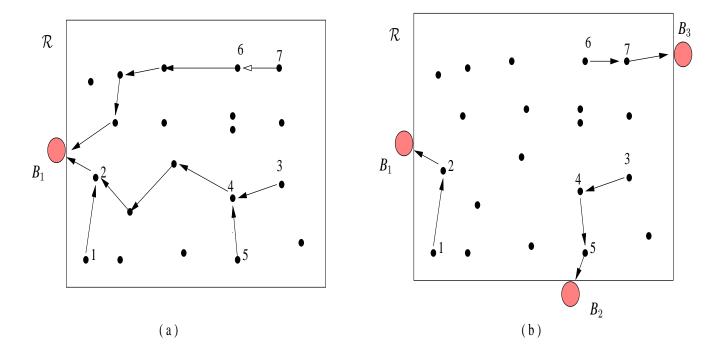
- Wireless sensor networks
 - sensor nodes typically distributed in remote/hostile sensing areas
 - nodes powered by finite energy batteries
 - batteries not easily replaced/recharged
 - depletion of battery energy can result in
 - * a change in NW topology or
 - \ast end of NW life itself
- Key issues in wireless sensor networks
 - Network lifetime
 - amount of useful data successfully transferred during NW lifetime
- Enhancing NW lifetime is crucial

Data Transport Model

- A base station (BS) is typically located at the boundary of or beyond the field/area in which sensors are distributed
- BS collects data from the sensor nodes
- Sensor nodes act as
 - source nodes that generate data to be passed on to the BS
 - intermediate relay nodes to relay data from other nodes towards the BS on a multihop basis
- Consequence of sensor nodes acting as relays
 - energy spent by nodes may not contribute to end-to-end delivery always (e.g., packets may still have more hops to reach the BS)
 - this results in reduced NW lifetime and efficiency in terms of total amount of data delivered to BS per joule of energy
 - affects more when number of hops between sensor node(s) to BS gets larger

Multiple Base Stations

- NW lifetime can be enhanced by the use of *multiple BSs*
 - deploy multiple BSs along the periphery/boundary of the sensing field/area
 - allow each BS to act as a data sink, i.e.,
 - * each sensor node can send its data to any one of these BSs (may be to the BS towards which the cost is minimum)
 - BSs can communicate among themselves to collate the data collected
 - * energy is not a major concern in the communication between BSs
- Deploying multiple BSs essentially can reduce the average number of hops between the source-sink pairs
 - can result in enhanced lifetime / amount of data delivered


I. Limits on NW Lifetime?

- Several works have reported bounds on the NW lifetime for single BS scenario
 - Bhardwaj et al., IEEE ICC'2001
 - Bhardwaj and Chandrakasan, IEEE INFOCOM'2002
 - Zhang and Hou, ACM Mobihoc'2004
 - Blough and Santi, Mobicom'2002
 - Arnon S., IEEE Commun. Letters, Feb'2005
 - Gandham, Dawande, Prakash and Venkateshan, Globecom '2003
- Our contribution
 - derive upper bounds on NW life time when multiple BSs are deployed
 - obtain optimum locations of the BSs that maximize these lifetime bounds

System Model

• Network

– # sensor nodes: N, # base stations: K

Figure 1: A sensor network over a rectangular region of observation \mathcal{R} with three base stations B_1, B_2, B_3 . Node 1 sends its data to base station B_1 via node 2. Node 3 sends its data to B_2 via nodes 4 and 5. Node 6 sends its data to B_3 via node 7. However in Single base station case data has to travel more no. of hops.

System Model

- Node Energy Behaviour
 - key energy parameters are energies needed to
 - * sense a bit (E_{sense}) , receive a bit (E_{rx})
 - \ast transmit a bit over a distance d, (E_{tx})
- Assuming a d^{η} path loss model,

$$E_{tx} = \alpha_{11} + \alpha_2 d^{\eta}, \quad E_{rx} = \alpha_{12}, \quad E_{sense} = \alpha_3,$$

- α_{11}, α_{12} : energy/bit consumed by the Tx, Rx electronics
- α_2 : accounts for energy/bit dissipated in the Tx amplifier, α_3 : energy cost of sensing a bit
- Typically, $E_{sense} \ll E_{tx}, E_{rx}$.
- Energy/bit consumed by a relay node is

$$E_{\rm relay}(d) = \alpha_{11} + \alpha_2 d^{\eta} + \alpha_{12} = \alpha_1 + \alpha_2 d^{\eta}$$

where $\alpha_1 = \alpha_{11} + \alpha_{12}$

System Model

- Node energy behaviour
 - If r is the # bits relayed per sec, the energy consumed per sec (i.e., power) is

$$P_{\text{relay}}(d) = r \cdot E_{\text{relay}}(d)$$

- The following energy parameters are used [Bhardwaj et al, ICC'2001], [Heinzelman Ph.D Thesis, MIT, 2000]:
 - $\alpha_1=180$ nJ/bit

–
$$lpha_2=10$$
 pJ/bit/ m^2 (for $\eta=2$) or 0.001 pJ/bit/ m^4 (for $\eta=4$).

Battery / Network Lifetime

- *E*_{battery} Joules: Battery energy available in each sensor node at the initial deployment
- A sensor node ceases to operate if its battery is drained below a certain usable energy threshold
- Network lifetime definitions, e.g.,
 - time taken till the first node to die we use this definition in the derivation of NW lifetime upper bound
 - time taken till a percentage of nodes to die
- Given \mathcal{R} , N, E_{battery} , ($\alpha_1, \alpha_2, \alpha_3$) and η , we are interested in
 - deriving bounds on the network lifetime when $K, K \ge 1$ base stations are deployed as data sinks along the periphery of the observation region \mathcal{R}
 - obtaining optimal locations of the base stations

Minimum Energy Relay

- Bounding NW lifetime involves the problem of establishing a data link of certain rate *r* between a sender (*A*) and destination (*B*) separated by distance *D* meters
- Two ways of doing this
 - direct transmission from A to B (in a single hop), or
 - using several intermediate nodes acting as relays (multihop)
- A scheme that transports data between two nodes such that the overall rate of energy dissipation is minimized is called a *minimum energy relay*
- If M-1 relays are introduced between A and B, i.e., M links between A and B (see Fig.), the overall rate of dissipation is

$$P_{\rm link}(D) = \sum_{i=1}^{M} P_{\rm relay}(d_i) - \alpha_{12},$$

where d_i is the inter-node distance of the *i*th link.

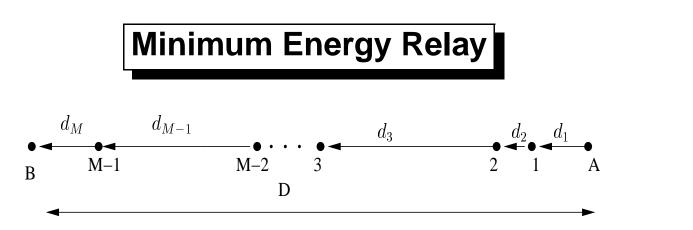


Figure 2: M - 1 relay nodes between points A and B

- Theorem: Given D and the number of intermediate relays (M 1), $P_{link}(D)$ is minimized when all hop distances (i.e., d_i 's) are made equal to D/M.
- So, optimum number of hops (links) is the one that minimizes $MP_{\text{relay}}(D/M)$, and is given by

$$M_{opt} = \left\lfloor \frac{D}{d_{char}}
ight
ceil ext{ or } \left\lfloor \frac{D}{d_{char}}
ight
ceil,$$

where

$$d_{
m char} = \sqrt[\eta]{rac{lpha_1}{lpha_2(\eta-1)}}$$

Minimum Energy Relay

 $\bullet\,$ Energy dissipation rate of relaying a bit over distance D can be bounded as

$$P_{\rm link}(D) \geq \left(\alpha_1 \frac{\eta}{\eta - 1} \frac{D}{d_{\rm char}} - \alpha_{12}\right) r$$

with equality iff D is an integral multiple of d_{char}

• Power dissipated in the network is always larger than or equal to the sum of this $P_{\rm link}(D)$ and the power for sensing, i.e.,

$$P_{\rm nw} \geq P_{\rm link}(D) + P_{sense} \geq \left(\alpha_1 \frac{\eta}{\eta - 1} \frac{D}{d_{\rm char}} - \alpha_{12}\right) r + \alpha_3 r$$

• As an approximation, sensing power can be ignored since the power for relaying data dominates.

Bound on NW Lifetime - One BS

• Single BS: (BS can be located on any one of the four sides of \mathcal{R})

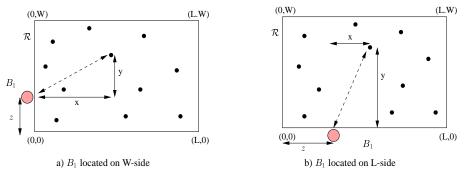


Figure 3: Single base station placements. a) B_1 located on W-side. b) B_1 located on L-side

- \bullet Let $P_{\rm NW}^{(z)}$ denote the energy dissipation in the entire NW for a given BS z
- \bullet Assuming uniform distribution of N nodes

$$P_{\rm NW}^{(z)} = N \int \int_{\mathcal{R}} P_{\rm nw}(x,y) \, \frac{1}{WL} \, dx \, dy.$$

• By minimum energy relay argument, $P_{\text{nw}}(x,y) \ge P_{\text{link}}\left(\sqrt{x^2 + y^2}\right)$, and hence

$$P_{\text{NW}}^{(z)} \geq \frac{N}{WL} \int_{-z}^{W-z} \int_{0}^{L} P_{\text{link}} \left(\sqrt{x^2 + y^2} \right) dx \, dy$$

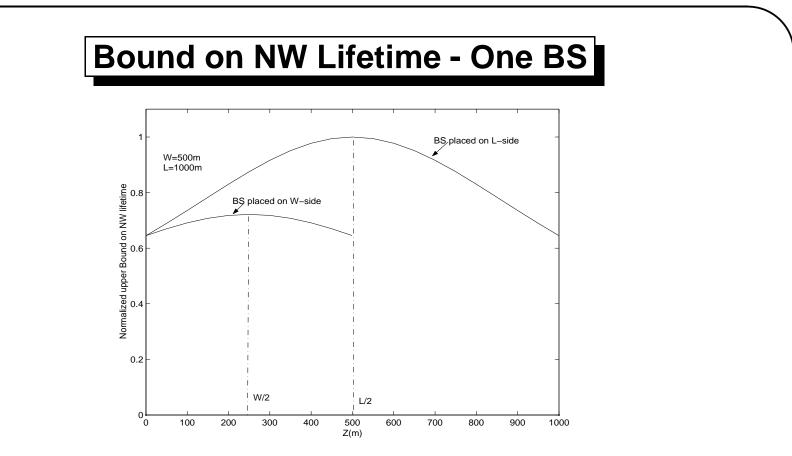
$$\geq r\alpha_1 \frac{\eta}{\eta - 1} \frac{N}{WL} \int_{-z}^{W-z} \int_{0}^{L} \frac{\sqrt{x^2 + y^2}}{d_{\text{char}}} \, dx \, dy$$

Bound on NW Lifetime - One BS

- Achieving NW lifetime demands that energy consumed in the NW to be no greater than $NE_{\rm battery}$
- Denoting $\mathcal{T}_{\text{one-BS}}^{(z)}$ as the NW lifetime with one BS at a given location z, we have

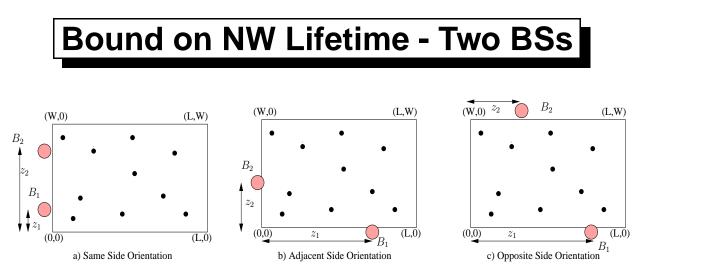
 $P_{\rm NW}^{(z)} \, \mathcal{T}_{\rm one-BS}^{(z)} \, \leq \, N E_{\rm battery}$

• An upper bound on the NW lifetime for a given BS location z is then given by

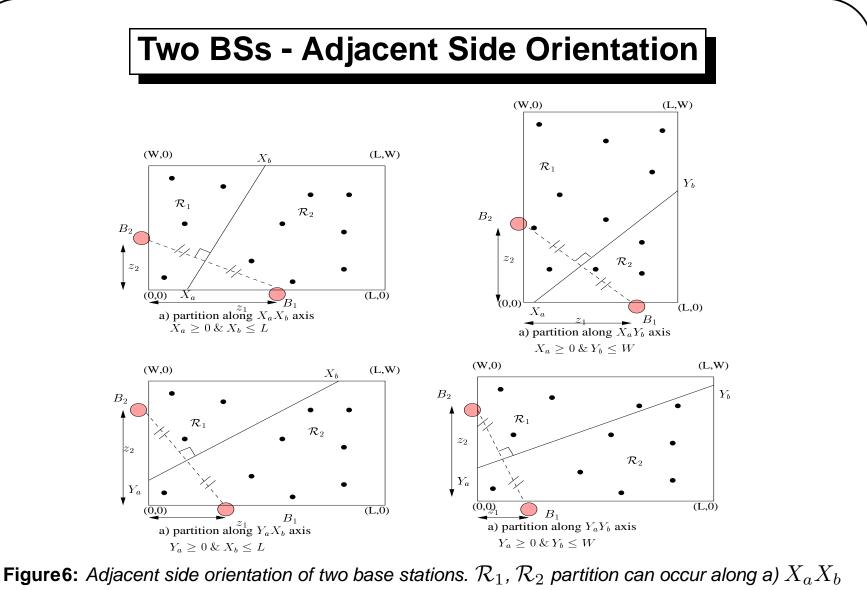

$$\mathcal{T}_{ ext{one-BS}}^{(z)} \leq rac{NE_{ ext{battery}}}{P_{ ext{NW}}^{(z)}}$$

• Optimal placement of the BS on the W-side can be obtained by choosing the *z* that maximizes the lifetime bound in the above, i.e.,

$$z_{ ext{opt}}^{(W)} = rac{\operatorname{argmax}}{z \in (0,W)} \ \ \mathcal{T}_{ ext{one-BS}}^{(z)}.$$


• Performing the above maximization, the optimal BS location is obtained as

$$z_{opt}^{(W)} = W/2,$$


Figure4: Normalized upper bound on network life time as a function of base station location for L = 1000 mand W = 500 m

• Optimum BS location is midpoint of L-side if L>W (midpoint of W-side if $L\leq W$)

Figure5: *Placements of two base stations. a) Same side orientation, b) adjacent side orientation, and c) opposite side orientation*

- Each node in the NW must be associated with any one BS
 - can choose the BS towards which energy spent for delivering data is minimum (by min. energy relay argument, it could be the nearest BS)
- This results in the region ${\cal R}$ to be partitioned into two sub-regions ${\cal R}_1$ and ${\cal R}_2$
 - This partitioning will occur along the perpendicular bisector of the line joining B_1 and B_2

axis, b) $X_a Y_b$ axis, c) $Y_a X_b$ axis, and d) $Y_a Y_b$ axis.

Two BSs - Adjacent Side Orientation

• The axis partitioning \mathcal{R}_1 and \mathcal{R}_2 is represented by the straight line

$$Y = mX + c$$
, $m = \frac{z_1}{z_2}$ and $c = \frac{z_2^2 - z_1^2}{2z_2}$

$$X_{a} = X|_{Y=0} \implies X_{a} = -\frac{c}{m} = \frac{z_{1}^{2} - z_{2}^{2}}{2z_{1}}, \quad X_{b} = X|_{Y=W} \implies X_{b} = \frac{W - c}{m} = \frac{W z_{2}}{z_{1}} - \frac{z_{2}^{2} - z_{1}^{2}}{2z_{1}}$$
$$Y_{a} = Y|_{X=0} \implies Y_{a} = c = \frac{z_{2}^{2} - z_{1}^{2}}{2z_{2}}, \quad Y_{b} = Y|_{X=L} \implies Y_{b} = mL + c = \frac{Lz_{1}}{z_{2}} + \frac{z_{2}^{2} - z_{1}^{2}}{2z_{2}}$$

• Partition axis type is i) $X_a X_b$ if $X_a \ge 0$ and $X_b \le L$ (Fig. (a)), ii) $X_a Y_b$ if $X_a \ge 0$ and $Y_b \le W$ (Fig. (b)), iii) $Y_a X_b$ if $Y_a \ge 0$ and $X_b \le L$ (Fig. (c)), and iv) $Y_a Y_b$ if $Y_a \ge 0$ and $Y_b \le W$ (Fig. (d))

Two BSs - Adjacent Side Orientation

• Energy dissipation in the entire NW with BS locations z_1 and z_2 for ASO case

$$P_{\text{NW,aso}}^{(z_1,z_2)} = N\left(\int \int_{\mathcal{R}_1} P_{\text{nw}}(x,y) \frac{1}{WL} \, dx \, dy + \int \int_{\mathcal{R}_2} P_{\text{nw}}(x,y) \frac{1}{WL} \, dx \, dy\right)$$

• By minimum energy argument, $P_{\text{nw}}(x,y) \ge P_{\text{link}}\left(\sqrt{x^2 + y^2}\right)$, and hence

$$P_{\text{NW,aso}}^{(z_1, z_2)} \geq \frac{r\alpha_1}{d_{\text{char}}} \frac{\eta}{\eta - 1} \frac{N}{WL} \left(d_{\text{2-BS,aso}}^{\mathcal{R}_1}(z_1, z_2) + d_{\text{2-BS,aso}}^{\mathcal{R}_2}(z_1, z_2) \right)$$

where

$$\begin{aligned} d_{\text{2-BS,aso}}^{\mathcal{R}_1}(z_1, z_2) &= \int_{y_1}^{y_2} \int_{x_1}^{x_2} \sqrt{x^2 + y^2} \, dx \, dy + \int_{y_3}^{y_4} \int_{x_3}^{x_4} \sqrt{x^2 + y^2} \, dx \, dy \\ d_{\text{2-BS,aso}}^{\mathcal{R}_2}(z_1, z_2) &= \int_{x_5}^{x_6} \int_{y_5}^{y_6} \sqrt{x^2 + y^2} \, dy \, dx + \int_{x_7}^{x_8} \int_{y_7}^{y_8} \sqrt{x^2 + y^2} \, dy \, dx \end{aligned}$$

	For	For	For	For
Limits	$X_a X_b$ axis	$X_a Y_b$ axis	$Y_a X_b$ axis	$Y_a Y_b$ axis
	Fig.(a)	Fig.(b)	Fig.(c)	Fig.(d)
(x_1, x_2)	$(0, X_{z_2})$	$(0, X_{z_2})$	$(0, X_{z_2})$	$(0, X_{z_2})$
(y_1,y_2)	$(-z_2,$	$(-z_2,$	$(Y_a - z_2,$	$(Y_a - z_2,$
	$W-z_2)$	$Y_b - z_2$)	$Y_b - z_2$)	$W-z_2)$
(x_3, x_4)	(0,0)	(0,L)	(0,L)	(0,0)
(y_3, y_4)	(0,0)	$(Y_b - z_2,$	$(Y_b - z_2,$	(0,0)
		$W-z_2)$	$W-z_2)$	
(x_5, x_6)	$(X_a - z_1,$	$(X_a - z_1,$	$(-z_1,$	$(-z_1,$
	$X_b - z_1$)	$L-z_1$)	$L-z_1)$	$X_b - z_1$)
(y_5,y_6)	$(0, Y_{z_1})$	$(0, Y_{z_1})$	$(0, Y_{z_1})$	$(0, Y_{z_1})$
(x_7, x_8)	$(X_b - z_1,$	(0,0)	(0,0)	$(X_b - z_1,$
	$L-z_1)$			$L-z_1)$
(y_7,y_8)	(0,W)	(0,0)	(0,0)	(0,W)

Table I: Values of limits y_1, y_2, \dots, y_8 and x_1, x_2, \dots, x_8 for various partition axis types in Figs. (a), (b), (c), (d)

Two BSs - Bound on NW Lifetime

• An upper bound on lifetime for a given z_1, z_2 and ASO can be obtained as

$$\mathcal{T}_{2\text{-BS,aso}}^{(z_1, z_2)} \leq \frac{NE_{\text{battery}}}{\frac{r\alpha_1}{d_{char}} \frac{\eta}{\eta - 1} \frac{N}{WL} \left(d_{2\text{-BS,aso}}^{\mathcal{R}_1}(z_1, z_2) + d_{2\text{-BS,aso}}^{\mathcal{R}_2}(z_1, z_2) \right)}$$

• Optimum locations of BSs for ASO is then given by

$$\begin{pmatrix} z_{1,\mathsf{opt}}, z_{2,\mathsf{opt}} \end{pmatrix}_{\mathsf{aso}} = \begin{array}{c} \operatorname*{argmax} \\ z_1 \in (0,L), \\ z_2 \in (0,W) \end{array} \mathcal{T}_{\text{2-BS,aso}}^{(z_1,z_2)}$$

- Lifetime bounds for SSO and OSO are derived likewise
- Finally, optimum locations of the BSs are chosen from the best locations of ASO, SSO, and OSO cases, as

$$\begin{pmatrix} \text{argmax} \\ z_1 \in (0,L), \\ z_2 \in (0,W) \\ \text{orient} \in \{\text{aso}, \text{sso}, \text{oso}\} \end{pmatrix} \mathcal{T}_{2\text{-BS}, \text{orient}}^{(z_1, z_2)}$$

Two BSs - Numerical Results

• We obtained NW lifetime bound and optimum BS locations through optimization using genetic algorithm

Two Base Stations (Jointly Optimum)				
Orientation		NW life time	Optimal locations	
		Upper Bound	of B_1 , B_2	
		(# rounds)		
SSO	W side	18.28	(0, 121.3), (0, 381.5)	
	L side	31.36	(133.7, 0), (761.4, 0)	
ASO		32.60	(693.2, 0), (0, 263.6)	
OSO	W side	31.41	(0, 249.4), (1000, 251.2)	
	L side	32.99	(716.6, 0), (282.6, 500)	

Table II: Upper bounds on network lifetime and optimal base station locations. Two base stations.

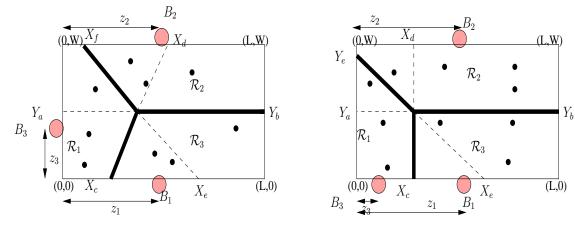
Joint optimization. L = 1000m, W = 500m.

Two BS - Jointly vs Individually Optimum

- The locations of B_1 and B_2 were jointly optimized
 - optimization complexity is high
 - becomes prohibitively complex for more number of base stations
- An alternate and relatively less complex approach is to individually optimize locations of B_1 and B_2 , i.e.,
 - fix B_1 at its optimal location obtained from the solution of one BS problem
 - then optimize the location of ${\cal B}_2$

Two BSs - Jointly vs Individually Optimum

Two Base Stations (Individually Optimum)				
Location of B_1 fixed at $(L/2,0) = (500,0)$				
Orientation	NW life time	Optimal location of B_2		
	Upper Bound			
	(# rounds)			
SSO	28.36	(164.9, 0)		
ASO	30.22	(0, 496.2)		
OSO	31.41	(502.5, 500)		


Table III: Upper bounds on network lifetime and optimum base station locations for two base stations.

 B_1 fixed at optimum location obtained from solving single BS problem. L = 1000m, W = 500m.

• Both jointly as well as individually optimum solutions results in OSO (opposite side orientation) deployments

Bound on NW Lifetime - Three BS

- Take the individually optimum approach (since less complex)
 - once locations of B_1 and B_2 are fixed, problem gets simplified to optimizing only over location of B_3

Adjacent Side with fixed : $z_1 = z_2 = L/2$

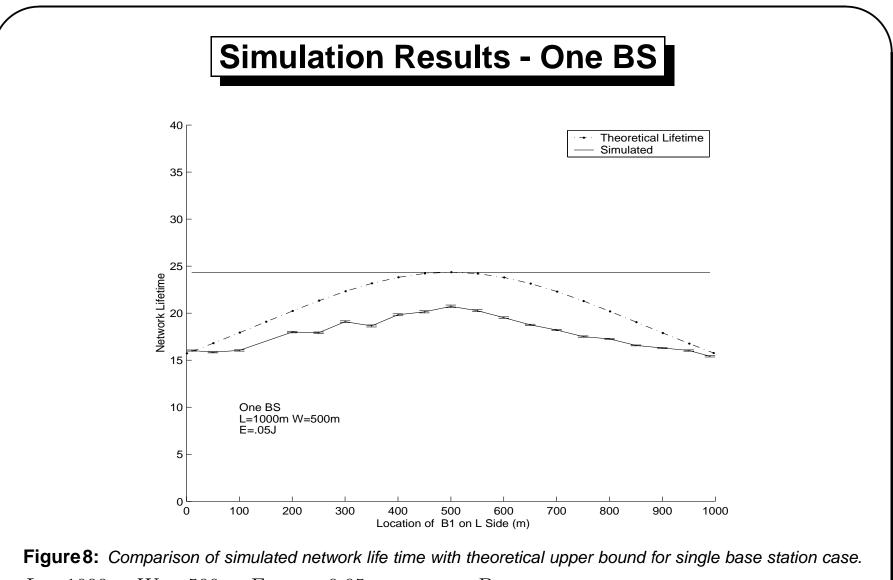
Same Side with fixed : $z_1 = z_2 = L/2$

Figure7: Placement of three base stations. B_1 and B_2 are placed at optimal locations obtained by solving the two base station problem. Location of B_3 is then optimized. a) B_3 on adjacent side of B_1 . b) B_3 on same side as B_1 .

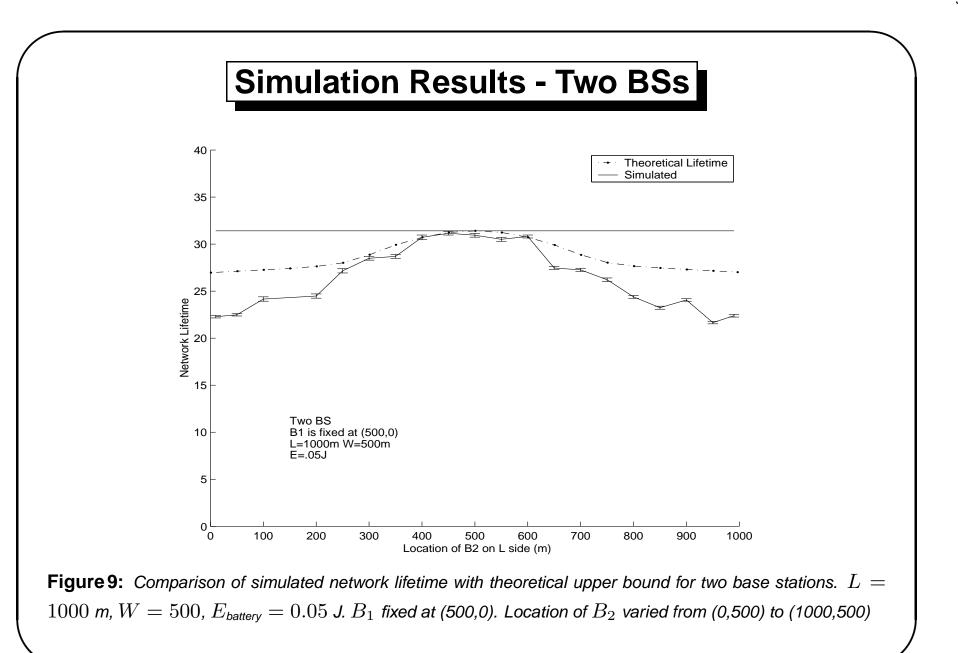
Three BSs - Numerical Results

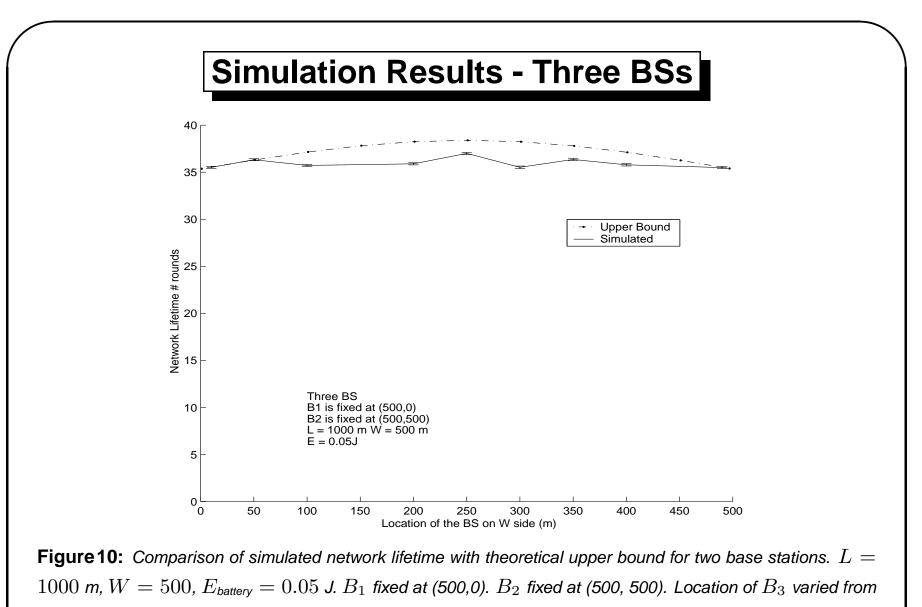
Three Base Stations (Individually Optimum)				
Location of B_1 fixed at (500,0)				
Location of B_2 fixed at (500,500)				
Orientation	NW life time	Optimum location		
	Upper Bound	of B_3		
	(# rounds)			
SSO	36.44	(152.6, 0)		
ASO	38.38	(0, 249.8)		

Table IV: Upper bounds on network lifetime and optimum base station locations for three base stations. B_1 and B_2 fixed at optimum locations obtained from solving two base stations problem. L=1000m. W=500m.


Performance Comparison of One, Two, Three BSs

No. of BS	NW life time	Optimum BS
	Upper Bound	Locations
	(# rounds)	
One BS	24.34	$B_1: (489.9, 0)$
Two BS	32.99	$B_1:~(716.6,0)$,
(Jointly opt)		$B_2: (500, 282.6)$
Two BS	31.41	$B_1: (500, 0),$
(Indiv. opt)		$B_2: (502.5, 500)$
Three BS	38.38	$B_1: (500, 0),$
(Indiv. opt)		$B_2: (500, 500)$
		$B_3:(0,249.8)$


TABLE V: Comparison of the upper bounds on network lifetime for one, two, and three base stations. $L=1000~{\rm m},\,W=500~{\rm m}.$


Simulation Results

- Simulated NW lifetime over several NW realizations at different BS locations were obtained
- Simulation parameters:
 - N = 50, L = 1000 m, W = 500 m, $E_{battery} = 0.5J$
 - Routing: A modified version of Minimum Cost Forwarding (MCF) protocol
 - MAC: Contention-free 'Self-organizing MAC for Sensor NW (SMACS)' protocol
 - Data packets are of equal length (each packet has 200 bits)
 - Time axis is divided into rounds; each round consists of 300 time frames
 - Each node generates 1 packet every 30 frames; i.e., 10 packets per round
 - NW lifetime: time until first node dies
 - Lifetime averaged over several realizations of the NW with 95% confidence for different number and locations of BSs

L = 1000 m, W = 500 m, $E_{\text{battery}} = 0.05$ J. Location of B_1 varied from (0,0) to (1000,0)

(0,0) to (0,500)

- In Multiple Base Station scenario
 - Upper Bound is derived which are validated with the help of simulation
 - Optimal locations of base stations are obtained and supported by simulation
 - Shown analytically that deploying multiple base stations extends lifetime

